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The objective of this paper is to assess the accuracy and efficiency of the immersed bound-
ary (IB) method to predict the wall pressure fluctuations in turbulent flows, where the flow
dynamics in the near-wall region is fundamental to correctly predict the overall flow. The
present approach achieves sufficient accuracy at the immersed boundary and overcomes
deficiencies in previous IB methods by introducing additional constraints – a compatibility
for the interpolated velocity boundary condition related to mass conservation and the for-
mal decoupling of the pressure on this surfaces. The immersed boundary-approximated
domain method (IB-ADM) developed in the present study satisfies these conditions with
an inexpensive computational overhead. The IB-ADM correctly predicts the near-wall
velocity, pressure and scalar fields in several example problems, including flows around
a very thin solid object for which incorrect results were obtained with previous IB methods.
In order to have sufficient near-wall mesh resolution for LES and DNS computations, the
present approach uses local mesh refinement. The present method has been also success-
fully applied to computation of the wall-pressure space–time correlation in DNS of turbu-
lent channel flow on grids not aligned with the boundaries. When applied to a turbulent
flow around an airfoil, the computed flow statistics – the mean/RMS flow field and power
spectra of the wall pressure – are in good agreement with experiment.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In industrial applications of computational fluid dynamics (CFD), it is not uncommon to devote more time to grid gener-
ation than to the flow solution. The immersed boundary (IB) method has emerged as an alternative, since it can reduce the
difficulty and time requirement of mesh generation. The IB method does not require the computational mesh to conform to
the physical boundaries. Instead, the solution algorithm is locally modified to enforce the desired boundary conditions. This
feature is attractive for very complex geometries, because a very simple mesh structure, such as a Cartesian mesh, can be
used. The IB method is also advantageous for problems associated with moving geometries. Another advantage presents it-
self in multi-phase or multi-material problems, where the interface between different materials can be regarded as an im-
mersed boundary.

The IB method was first introduced by Peskin [41] for computing blood flow in the cardiovascular system; subsequently,
there have been numerous efforts to enhance its accuracy and stability. Readers can refer to articles by Mittal and Iaccarino
[37] and Iaccarino and Verzicco [23] for further information on the previous studies. So far, IB methods have been applied to
a wide range of applications: compressible flows [14,36], particulate flows [51,58], micro-scale flows [2], interaction with
solid bodies ([15,61], among others), multi-phase flows [12], conjugate heat transfer [22,59], environmental flows [45],
. All rights reserved.
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bio-fluids [10], etc. However, a relatively small number of studies have been published for turbulent flows with high Rey-
nolds numbers.

Although many previous studies have reported theoretical improvements and encouraging results, a few issues remain to
be addressed. In the direct forcing techniques ([38,9,47], among others), for example, issues related to enforcing mass con-
servation have been raised. In some approaches, mass conservation at the IB is satisfied by the velocity fields both in the fluid
and solid regions. In this case, the (unphysical) velocity field in the solid becomes important because it affects the pressure
and velocity distribution through the velocity divergence across the IB. This issue can become more serious in the recon-
struction methods (e.g., [9,16,15]), since treatment for the velocities at the first grid points into the solid region is notionally
undefined. Iaccarino and Verzicco [23] observed that different treatments of the solid velocity field do not affect the flow
field in the fluid region in their numerical experiments; this is tested in the present study. Further issues on the general
IB method and the reconstruction method will also be discussed later.

In the literature, several IB methods have been applied to LES/DNS of various turbulent flows: flow over a wavy wall
[47,33,57], flow over a sphere [60], flow inside a piston engine [53], flow in an impeller-stirred tank [52], flow over a man-
nequin [6], inclined channel [24], flow in a nuclear rod-bundle [24], flow over a building [45], stator–rotor interaction [49],
etc. Most of these studies have focused on the flow field away from the wall. In some cases, the distribution of the time-aver-
aged pressure is shown, but there is no previous study which presents high-order statistics of the wall pressure at the IB.
Thus, it is very important to assess the ability of the IB method to predict wall variables correctly in turbulent simulations.

Another important issue arising in LES/DNS of turbulent flows is generation of a sufficiently resolved mesh. While the
combination of a Cartesian mesh and the IB method has attractive features, it has a limitation in practical cases, especially
in complex turbulent flows. The Kolmogorov scale is proportional to Re�3=4; thus, the smallest mesh size decreases as the
Reynolds number increases. In order to reduce the total number of mesh points, the mesh size in the far-field needs to re-
main large. Thus, the ratio of the largest and smallest mesh sizes increases with the Reynolds number in turbulent simula-
tions; as a result, a flow with a high Reynolds number can not be handled efficiently with a purely Cartesian mesh. In the
present study, the local mesh refinement technique is employed. Fig. 1 shows examples of a locally refined mesh and
body-fitted mesh. Two geometric features of a locally refined mesh are (i) hanging nodes, which enable intensive local mesh
refinement, and (ii) Cartesian hexahedral mesh, which makes the development of an automatic mesh-generation algorithm
easy. The present local mesh refinement is described in greater details in Section 2.1.

The objective of the present study is to assess the effectiveness of the IB method to correctly predict the wall-pressure
fluctuations in turbulent flows. In order to accomplish this, the pressure fluctuations are computed for a channel flow
and a flow around an airfoil. Then, wall pressure RMS fluctuations as well as the spectra are computed and compared with
previous studies and experimental data. In the next section, the Navier–Stokes solver and the local mesh refinement tech-
nique are described. In Section 3, various aspects of the IB method are discussed. In order to resolve identified issues, revi-
sions to existing IB methods are devised. In Sections 4 and 5, results of the verification and validation study are presented,
followed by the conclusion in Section 6.

2. Numerical methods

2.1. Description of the Navier–Stokes solvers

The Navier–Stokes equation and the continuity equation for unsteady incompressible viscous flow in Cartesian coordi-
nates are (in non-dimensional form):
@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
; ð1Þ

@ui

@xi
¼ 0; ð2Þ
Fig. 1. Examples of a locally refined mesh and body-fitted mesh.
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where t is the time, Re ¼ U0L=m is the Reynolds number, U0 is a reference velocity, L is a reference length, m is the kinematic
viscosity, ui is the velocity component in the i direction, p is the pressure non-dimensionalized by qU2

0, and q is the density.
In the present study, the solution of the Navier–Stokes equations (1) and (2) is obtained using a fully implicit LES solver

based on an unstructured collocated mesh (CDP 1). In this solver, the time-staggered scheme of Pierce [42] is employed. The
discretized momentum equation at ðnþ 1=2Þ-th time step is written as:
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In CDP, the spatial derivatives are computed using a finite volume method (FVM) for node-based collocated mesh. The flux at
the face of a control volume is evaluated by applying a second-order interpolation and mid-point rule for numerical integra-
tion. Further details about CDP are available in [18,17]. It is obviously more time-consuming to use an unstructured mesh
solver with the IB method than to develop an algorithm tailored for structured meshes. However, locally refined meshes
(i.e., with hanging nodes) do not require special treatment, and the present approach can easily support load-balanced com-
putations in a massively parallel computing environment. The present algorithm treats cells around hanging nodes as poly-
hedral elements. It achieves second-order accuracy for Cartesian meshes, but the accuracy is reduced locally to first order at
hanging nodes. Even in this case, the L-2 norm of the error is observed to be the second order, since the fraction of hanging
nodes over total nodes is never large. To solve the discretized momentum (Eq. (3)) and continuity equations (Eq. (2)) effi-
ciently, a variant of the fractional-step method ([29,42]) is employed.

Locally refined mesh, sometimes referred to as adaptive mesh refinement (AMR) has been discussed in several previous
studies ([4,1,3,19,21], among others) and typically constructed using a hierarchical tree structure (e.g., [4,8]) to record the
connectivity of mesh elements at different refinement levels. On the other hand, Aftosmis et al. [1] and Ham et al. [19] used
a fully unstructured approach by handling the elements with hanging nodes as polyhedra. Although the unstructured ap-
proach requires more memory than the tree structure, it has the advantage of easily allowing anisotropic (directional) refine-
ment. In the present study, the unstructured approach is naturally employed by the flow solver. Based on the features noted
in the previous studies, locally refined mesh structure provides (i) easy control of the local resolution; (ii) a fast turn-around
time with respect to unstructured mesh generation for complex geometries; (iii) development of automatic mesh-generation
strategies.

3. Treatment of immersed boundary

In this section, the mathematical formulation of the IB method is derived. As a starting point of the previous approaches,
the standard reconstruction method is presented. In order to address the limitations of this approach, a new IB treatment is
devised and compared with the original method.

3.1. Basic equations of the IB method

In order to handle solid objects immersed in the fluid, the governing equations, Eqs. (1) and (2) need to be modified to
enforce boundary conditions at the fluid-solid interface in the physical domain. From the work of Peskin [41], enforcing
the velocity boundary condition is expressed via an additional forcing term to the original momentum equation:
@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xj@xj
þ fi; ð4Þ

fi ¼ 0 in Xfluid

¼ Fi in Xsolid or CIB
;

ui ¼ ui;IB at CIB; ð5Þ
@ui

@xi
¼ 0 in Xfluid þXsolid; ð6Þ
where X denotes a domain of fluid or solid. CIB denotes the interface between Xsolid and Xfluid. Enforcing the continuity equa-
tion for Xsolid is discussed later in this study. The forcing term Fi is determined such that the velocity boundary condition is
satisfied at CIB. Some IB methods have a confined non-zero Fi on CIB by using an approximated, smooth Dirac delta function.
In practical terms in the implicit forcing technique, the forcing term is never computed (e.g., [9,47]); however, the mathe-
matical formulation for these methods still can be derived with the forcing term [37], so that Eq. (4) does not loose gener-
ality. This set of governing equations has been used in most of the previous studies and is referred to as the standard
formulation of the IB method.

While Eqs. (4)–(6) have been used widely in IB methods, there are a few issues worth clarifying. The first is related to the
pressure accuracy at the boundary CIB. By using Eqs. (4)–(6) for determining the pressure, it is assumed that the unmodified
is named after Charles David Pierce (1969–2002).
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governing equations are satisfied in Xfluid, such that the pressure gradient satisfies the following relationship on the fluid side
of CIB (namely, CIB�fluid):
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where ufluid
i denotes the velocity field in Xfluid including the (eventual) boundary velocity. By solving Eqs. (4)–(6), however,

the resulting pressure gradient satisfies:
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In practice, the terms in Eq. (8) are evaluated using velocity fields in both Xfluid and Xsolid. There is no evidence that the dif-
ference between two pressure gradients in Eqs. (7) and (8) is always negligible, unless fi is zero at CIB or the velocity gradient
is discontinuous.

Another example demonstrating the need for an additional treatment of the pressure is the interface problem shown in
Fig. 2. There is a thin solid boundary (interface) with virtually zero thickness between two channels with steady laminar
flows in the opposite directions. The pressure at the boundary ðCIBÞ between two channels increases in the x-direction for
the lower channel and decreases for the upper channel. This example is inspired by a flow around a thin airfoil where the
pressure distribution on the pressure and suction sides must remain decoupled. For the very thin interface in Fig. 2, the solu-
tion requires a discontinuous pressure profile across the interface. This can be achieved by separating the discretized oper-
ators across the interface. For example, the cut-cell method [50] modifies the operator near the IB so that the solution on one
side of the interface is not affected by the other side. This is equivalent to enforcing Eq. (7) at the boundary ðCIBÞ on each side
of the interface, thus resulting in solutions across CIB independent of each other. More details are given in Section 3.4.

This decoupling process allows discontinuous solutions across the interface and is similar to the ‘‘Jump condition” used in
the immersed interface method ([34,56], among others) and the ghost fluid method [11]. In the present study, Eq. (7) will be
referred to as the decoupling constraint for the pressure. This constraint is satisfied when the flow field in the fluid domain is
decoupled from other physical domains. In other words, both the momentum equation and the continuity equation are sat-
isfied using flow variables in the fluid domain and the extrapolated variables inside the solid body. Then, Eq. (7) is automat-
ically satisfied.

The second issue is related to the velocity boundary condition at CIB (Eq. (5)). After discretization, the positions where we
want to enforce Eq. (5) are not necessarily located on the grid points. A relationship that approximates Eq. (5) is then nec-
essary. One method of accomplishing this is to ‘‘spread” the effect of Eq. (5) to nearby velocity points in Xfluid by modifying
their discrete momentum equation, e.g. Fadlun et al. [9]. Another widely used method is to satisfy Eq. (5) using interpolation
of neighboring velocity points:
X

nb

wnbui;nb ¼ ui;IB at CIB; ð9Þ
where wnb is the interpolation coefficient and nb denotes the index of neighboring points. A linear interpolation has been
employed in several previous studies. In Mohd-Yusof [38], this method was described as mirroring the velocity field across
CIB. An example is shown in Fig. 3(a) where the velocity field across the IB is mirrored such that the no-slip boundary con-
dition is satisfied using a linear interpolation.

Methods based on mirroring satisfy the velocity boundary condition with accuracy of the interpolation method. In prac-
tice, the accuracy may be lower because of incompatibility with the continuity equation Eq. (6). This issue was previously
reported by Kim et al. [28] and schematically represented for a simple case in Fig. 3(b). Fig. 4 shows tangential and normal
coordinates local to the immersed boundary CIB. Assume that usðs;gÞ and ugðs;gÞ are the tangential and normal velocity
fields in Xfluid. The velocity field in the mirrored region Xmirror can be expressed as:
usðs;gÞ ¼ �usðs;�gÞ þ 2usðs;0Þ
ugðs;gÞ ¼ �ugðs;�gÞ þ 2ugðs; 0Þ

�
in Xmirror : ð10Þ
solidΩ

Fig. 2. A very thin solid object between two channels with flows in the opposite directions.
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We assume that the continuity equation is satisfied in Xfluid:
@
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@

@g
ugðs;gÞ ¼ 0 in Xfluid:
For simplicity, assume the no-slip condition ðusðs;0Þ ¼ ugðs;0Þ ¼ 0Þ. Then, it is easily proved that
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The mirrored velocity field across CIB does not satisfy the continuity equation unless @ug=@g ¼ 0 near CIB. This is a direct con-
sequence of mass conservation. However, enforcing the mirrored velocity and continuity equation together can reduce the
degree of freedom for the velocity interpolation and affect the accuracy especially on coarse meshes. The accuracy is not af-
fected when @ug=@g � 0 is satisfied, e.g., streamlines are parallel near CIB. In the worst situation, however, the accuracy is
reduced to the first order. For example, the case in Fig. 3(b) requires the y-velocity components to be zero in order to satisfy
the no-slip x-velocity boundary condition, regardless of the grid size. This situation typically occurs near a stagnation point.
Kim et al. [28] addressed this issue by satisfying the continuity equation with a non-zero right-hand side (RHS) term, which
reduced the velocity error at least by 60%. However, it should be emphasized that @ug=@g ¼ 0 at CIB is the correct condition,
which implies that the accuracy will be recovered as the mesh is refined. Interestingly, the mirrored velocity field produces a
less serious problem in the collocated mesh, as discussed in [26].

3.2. The ‘‘standard” IB reconstruction method

The starting point for the present IB method is the method of Fadlun et al. [9]. In the literature, this approach has been
referred to as the reconstruction or the interpolation method. An interpolation formula replaces Eq. (4) near the IB. In addi-
tion to its simplicity, it has several advantages. Since the velocity boundary condition is enforced with implicit forcing, there
is no severe limit on the time step. The velocity components from the regions across the IB are decoupled. And this approach
does not rely on the mirrored velocity field in the solid region.

We used a linear interpolation method similar to Fadlun et al. [9] and Gilmanov et al. [16]. A linear interpolation formula
is used to determine a velocity component that is in the fluid region and has one of the neighboring points in the discreti-
zation stencil outside of the fluid region. In Gilmanov and Sotiropoulos [15] and Choi et al. [6], higher order interpolation
methods were used. Choi et al. stated that a power-law based interpolation is better suited to high Reynolds number flows
than a linear interpolation. For the velocity, we considered the following interpolation method:
ui;c ¼
X

nb

wi;nbui;nb þwIBui;IB; ð11Þ
where wnb is the interpolation coefficient, nb denotes the index of neighboring points, and subscript IB denotes the point on
the IB that is the boundary-normal projection of the velocity node c. Assuming a local coordinate whose center is located at a
point on the IB, we can restate the linear interpolation method as:
uiðx1; x2; x3Þ ¼ a1;ix1 þ a2;ix2 þ a3;ix3 þ ui;IB; ð12Þ
where ða1;i; a2;i; a3;iÞ are coefficients determined by the local IB geometry and velocity.
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A special treatment for the mass conservation was not mentioned in Fadlun et al. [9]. Thus, we assumed that the conti-
nuity equation is enforced in the entire computational domain, which results in no modification to the mass conservation
procedure. We refer to the combination of the linear interpolation method and mass conservation enforced in the entire do-
main as the standard reconstruction method (SRM).

One concern of SRM is that the treatment of the velocities in the solid region which contribute to mass conservation in the
grid cells crossed by the IB is notionally undefined. Without any special treatment, the original method for enforcing mass
conservation results in coupling between the solutions across the IB via discretized operators, which disobeys the pressure
decoupling constraint (Eq. (7)). In our numerical tests with the flow with a very thin wall in Section 4.2 shows that the SRM
fails to predict the flow fields correctly.

In order to address this issue, a few options for enforcing mass conservation near the IB are introduced and compared in
the next section. Then, the most viable one is selected and discussed further in the following sections.

3.3. Treatment of mass conservation near immersed boundary

Fig. 5 shows different grid configurations near the IB. The shaded area is a control volume where mass is conserved in
each configuration.

In Fig. 5(a), mass is conserved for every control volume in the domain as it is without the IB method. This has been a stan-
dard method for several IB methods with Eqs. (4)–(6) as their governing equations. For a control volume crossed by CIB, mass
conservation is described by velocity values in both fluid ðXfluidÞ and solid ðXsolidÞ domains, which implies that the pressure
decoupling constraint Eq. (7) may not be satisfied. In the present study, this method is referred to as standard mass
conservation.

In Fig. 5(b), rectangular control volumes (CVs) crossed by CIB are divided into the flow region where solutions to the Na-
vier–Stokes equations are desired, and boundary regions (i.e., white area in the figure) where no solution is needed. CIB sep-
arates these two regions. Mass conservation is satisfied for the reshaped CVs formed by existing CV faces in Xfluid and CIB.
Similar methods have been used by cut-cell approaches ([48,50,31], among others) and Kim et al. [28]. This method satisfies
the pressure decoupling constraint, however, is very complicated. As noted by Kirkpatrick et al. [31], another problem is that
the matrix condition number increases significantly when the size of the reshaped CV is very small.

As a final option, in Fig. 5(c), CVs crossed by CIB and in Xsolid are excluded from the computational domain. By satisfying
mass conservation only for CVs in Xfluid, this method does not suffer from the incompatibility with the mirrored velocity field.
Also, it is numerically less complex than the reshaped CV approach by maintaining the original CV shape for mass conser-
vation. Satisfying the pressure decoupling constraint with this method is discussed in greater detail in the next section.

3.4. Immersed boundary-approximated domain method

The immersed boundary-approximated domain method (IB-ADM) introduced in this section satisfies the pressure decou-
pling constraint, and the computational overhead is marginal. Although the IB-ADM was implemented in CDP – a solver for
node-based collocated meshes, the method is applicable to both staggered and collocated meshes.

3.4.1. Enforcing mass conservation for approximated domain
In Fig. 5(c), mass conservation is satisfied for CVs in Xfluid but not for CVs in Xsolid and CVs crossed by the immersed bound-

ary CIB. The first step of this method is to identify CVs entirely in Xfluid (the shaded area in Fig. 5(c)). A group of contiguous
CVs identified in this way is referred to as an approximated domain. The boundary of the approximated domain facing the IB
is then identified and referred to as an approximated boundary. Fig. 6 shows an example of the approximated domain
(shaded area, Xa) and approximated boundary (thick gray line, Ca).
ΓΓΓΓIB

fluidΩ

solidΩ

ΓΓΓΓ

fluidΩ

solidΩ

ΓΓΓΓIB

fluidΩ

solidΩ

IB

Fig. 5. Different schemes for defining control volumes (CVs) for mass conservation near IB: (a) standard scheme; (b) mass conservation for reshaped CVs;
(c) mass conservation for fluid-side CVs. The shaded area denotes a control volume where mass conservation is enforced.
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The idea of the revised mass conservation method is that the discretized momentum equation and continuity equation
are satisfied without modification inside the approximated domain Xa. We then need to provide the boundary condition
to the approximated domain. The velocity boundary condition at Ca is reconstructed using one of the interpolation methods.
Imposing boundary conditions at Ca results in all flow variables (velocity, pressure and scalar) at CVs in Xsolid and CVs crossed
by the IB being excluded from the computation. Fig. 7 shows the interpolated velocity components on Ca for the staggered,
CV-collocated and node-collocated arrangements of the velocity variables.

Ca is a grid-based (stair-step) approximation to CIB in the fluid domain. The domain between Ca and CIB is composed of
reshaped CVs in the fluid domain and denoted by XIB. Our strategy to satisfy mass conservation only in the approximated
domain Xa leads to an additional condition of global mass conservation in XIB:
Fig
Z
Ca

u � dA ¼
Z

CIB

u � dA; ð13Þ
where dA is directed outward from Xa. In order to avoid complexity of satisfying mass conservation for the reshaped CVs,
mass conservation between Xa and CIB (Eq. (13)) is alternatively used as an additional constraint; this is satisfied by mod-
ifying the interpolation method for the velocity. A least-square method is used to account for the constraint of mass
conservation.

For simplicity, the basic linear interpolation method Eq. (11) is considered. The continuous form Eq. (12) is rewritten as:
~um ¼~a1;mx1;m þ~a2;mx2;m þ~a3;mx3;m þ~uIB;m ¼
X3

k

~ak;mxk;m þ~uIB;m; ð14Þ
where ~um denotes a velocity vector on an approximated boundary face and m is the index of the approximated boundary
face. The local coordinate system is centered at a point on the IB and the interpolated velocity is located at
ðx1;m; x2;m; x3;mÞ. ~ak;m is the interpolation coefficient, and ~uIB;m is the velocity value at the IB. Note that the repeated indices
do not imply summation. A correction to the coefficient ~ak;m is considered to determine ~um:
~um ¼
X3

k

ð~ak;m þ ~dak;mÞxk;m þ~uIB;m ¼~u�m þ
X3

k

~dak;mxk;m; ð15Þ
where ~dak;m is the correction to the interpolation coefficient, and ~u�m is the velocity from the unmodified interpolation for-
mula Eq. (14).

A minimum amount of correction is computed while the constraint Eq. (13) is satisfied. The objective function to be
minimized and the equality constraint are:
aΩ

solidΩ

IBΓ : Interpolated velocity

aΩ

solidΩ

IBΓ : Interpolated velocity

aΩ

solidΩ

IBΓ : Interpolated velocity

. 7. Examples of the interpolated velocity components on the approximated boundary Ca in different arrangements of the velocity variables.
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J ¼
XNa

m

1
xm

X3
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��� ���2
 !

; ð16Þ

QIB ¼
Z

CIB

u � dA ¼
XNa

m

~um �~Am; ð17Þ
where Na denotes the total number of the approximated boundary faces, and xm is the weight factor of the face. xm ¼ 1 is
used in the present study.~Am is the outward-normal face-area vector at the approximated boundary face where~um is located.
QIB, which is the mass flux through CIB, is available by integrating the velocity boundary condition. Eq. (17) is a discrete ver-
sion of the constraint Eq. (13). j~dak;mj2 is minimized instead of j~dak;mxk;mj2 in order to achieve spatial convergence of the
boundary condition.

In order to obtain an expression for ~dak;m, the minimization problem is solved by introducing the Lagrange multiplier k:
Jk ¼
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� Q IB

" #
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Using @Jk=~dak;m ¼ 0 yields an expression for ~dak;m:
~dak;m ¼ �
k
2

xk;mxm
~Am: ð19Þ
Substituting this into the constraint Eq. (17) and solving for k yields:
k
2
¼ � Q IB �

PNa
m
~u�m �~AmPNa

m xmj~Amj2
P3

k x2
k;m

� � : ð20Þ
Letting Q e ¼ QIB �
PNa

m ~u
�
m �~Am, we can get an expression for ~um:
~um ¼~u�m þ
Qe
P3

kx2
k;mPNa

m xmj~Amj2
P3

k x2
k;m

� �xm
~Am ¼~u�m þ~Gm: ð21Þ
Qe is the error from~u�m relative to the mass constraint Eq. (17). In Eq. (21), the mass flux error Q e is corrected in~um with the
second term in the RHS. With an iterative solver for the velocity,~um is updated every iteration using Eq. (21) until the error
vanishes. Note that the size of the correction is weighted by the square of the distance between the locations of~um and~uIB;m.
The correction term is of second-order error because of the weight and the fact that Qe is proportional to the error of the
velocity reconstruction which is second-order.

Since this correction process redistributes the error from the interpolation method, applying to a situation where the er-
ror is very localized may not be appropriate. For example, when different boundary conditions are used in different regions
of Ca, it is recommended that the Ca is divided such that the boundary condition at the faces in a Ca is homogeneous. In case
of an impinging jet, as another example, the interpolation error is locally large near the jet due to high velocity gradient. In

this case, either dividing the wall (Ca) to close and distant regions or using xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

kð~ak;m �~Am=j~AmjÞ2
q

instead of xm ¼ 1 is
more reasonable. Considering that this xm is the size of the gradient of the face-normal component of ~u�m, the size of the
correction is proportional to the velocity gradient as well as the distance. For simplicity, however, xm ¼ 1 is used in the
numerical tests of the present study.

3.4.2. Implementation for the fractional step method
With the fractional step method in Section 2.1 and the IB-ADM in this section, the following relationships are used for the

velocity projection at the k-th time step:
r �r/ ¼ 1
Dt
r � ûk in Xa; ð22Þ

uk
i ¼ ûk

i � Dt
@/
@xi
¼ ûk

i þOðDt2Þ; ð23Þ
where / ¼ pk � pk�1 and ûk
i is the intermediate velocity. Eq. (22) is solved by an algebraic multigrid solver [20]. The standard

mass conservation technique produces a finite error in the velocity B.C. during the projection step. This is because ui ¼ ûi is
not enforced at the immersed boundary CIB. In the IB-ADM, ui ¼ ûi is enforced at the approximated boundary Ca instead of
CIB. It is very important to satisfy the pressure decoupling constraint. This assumption leads to @/=@n ¼ 0 at Ca. If Ca is very
close to CIB, the original condition is recovered.

The interpolation formula, Eq. (15), is satisfied for ûk
i , not uk

i . Thus, when evaluated for uk
i , Eq. (15) will have a finite error.

This error is of order Dt2 and uk
i ¼ ûk

i at Ca guarantees that uk
i converges to the velocity B.C. as the velocity point becomes

close to CIB. It is possible to satisfy Eq. (15) exactly for uk
i , for example by employing the method by Ikeno and Kajishima

[24] and Taira and Colonius [46].
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3.4.3. Interpolation method for the velocity
In the standard reconstruction method, the linear interpolation method is used for a velocity component that is in the

fluid region and has one of the neighboring points in the discretization stencil unavailable in the fluid region. In the im-
mersed boundary-approximated domain method (IB-ADM) presented in this section, however, the velocity components
at Ca are determined from the interpolation method. Except for this, various interpolation methods can be used with the
IB-ADM. Although the linear interpolation (Eq. (11)) is simplest, we found that the velocity error is slightly reduced when
the effect of the pressure gradient term is included following the approach of [27]:
uk
i;c ¼

X
nb

wi;nbuk
i;nb þwIBuk

i;IB � Dt
@pk�1

@xi

����
c

�
X

nb

wi;nb
@pk�1

@xi

����
nb

�wi;IB
@pk�1

@xi

����
IB

 !
: ð24Þ
Thus, this interpolation method is used in test cases presented hereafter.

4. Accuracy test and verification

In this section, results of a few two-dimensional cases are presented to show the accuracy of the present approach in com-
parison with the standard reconstruction method (the linear interpolation method + standard mass conservation).

4.1. Decaying vortex problem

The problem of decaying vortices in a periodic domain [7] is used to test the accuracy of the IB-ADM. The velocity and
pressure fields are given as:
u1ðx1; x2; tÞ ¼ � cospx1 sinpx2 e�2p2t=Re; ð25Þ
u2ðx1; x2; tÞ ¼ sin px1 cospx2 e�2p2t=Re; ð26Þ
pðx1; x2; tÞ ¼ �0:25ðcos 2px1 þ cos 2px2Þe�4p2t=Re: ð27Þ
In order to test the accuracy of a passive scalar with the IB method, a manufactured solution [32] is employed. The governing
equations for the passive scalar T and the solution are:
@T
@t
þ @u1T

@x1
þ @u2T

@x2
¼ a

@2T
@x2

1

þ @
2T
@x2

2

" #
þ Sðx1; x2; tÞ; ð28Þ

Sðx1; x2; tÞ ¼
p
2
ðu1 sin 2px1 þ u2 sin 2px2Þe�4p2at; ð29Þ

Tðx1; x2; tÞ ¼ �0:25ðcos 2px1 þ cos 2px2Þe�4p2at ; ð30Þ
where a is the diffusivity of the scalar. The flow field outside the rotated square (Fig. 8(a)) is solved from the exact flow field
at t ¼ 0. The Reynolds number and 1=a are set to 105. The Dirichlet B.C. at the IB and the linear reconstruction are used for
the velocity and passive scalar. The computed flow field at t ¼ 0:2 is compared with the analytic solution. The order of accu-
racy is investigated by computing the maximum ðL1Þ error of the flow variables with different grid sizes and time steps. A set
of grid sizes (Dx ¼ 0:125;0:0625 and 0.03125) is chosen with a set of time steps (Dt ¼ 0:02;0:01 and 0.005) as parameters.
Both grid size and time step are halved to simultaneously test the order accuracy in space and time.

Fig. 8(b) shows the accuracy of the velocity, pressure and passive scalar for two IB geometries. The order of accuracy is
shown to be second order for the velocity and pressure, and near second order (’1.88) for the passive scalar. The accuracy
loss for the scalar does not result from the IB method but from the discretization of the advection term (WENO) that uses a
stencil modified near the boundary.

4.2. A very thin wall between two channel flows in opposite directions

This test case was introduced in Section 3.1 and illustrated in Fig. 2. Steady laminar flows in opposite directions in two
channels separated by a very thin rigid wall are considered. As previously mentioned, satisfying the pressure decoupling con-
straint ensures that the flow field in one fluid domain is not affected by the other unconnected domains. This case is there-
fore useful to verify whether the IB method satisfies the pressure decoupling constraint.

The Reynolds number based on the channel half-width d and the centerline velocity Uo is 100. The computational domain
size is �10 < x=d < 10 and �3 < y=d < 3, respectively. The channels are aligned in the x-direction. The lower channel ex-
tends from �2 < y=d < 0� e, and the upper channel from 0þ e < y=d < 2. The value of e is set to 10�6. All boundaries in
the y-direction, including the thin wall at y ¼ 0, are treated using the IB method. The no-slip condition is enforced at the
immersed boundaries. A uniform grid spacing of ðDx=d;Dy=dÞ ’ ð0:156;0:093Þ is used for the mesh.

By using different boundary conditions in the x-direction, this problem can be cast into two scenarios that produce an
identical velocity field but different pressure fields. First, if a parabolic velocity profile is imposed at the inlet ðx=d ¼ �10Þ
and outlet ðx=d ¼ 10Þ, the pressure drops constantly in the streamwise direction because the wall shear stress is balanced
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by the pressure gradient. Because flow directions are opposite in two channels, a pressure profile across the thin wall shows
a discontinuity which requires the pressure decoupling constraint. In the second case, the periodic B.C. is imposed in the x-
direction and a constant momentum forcing term is added to the x-momentum equation. Then, the computed pressure has
zero gradient in the entire domain, since the wall shear stress is balanced by the forcing term. This case therefore does not
require the pressure decoupling constraint.

Fig. 9 shows contours of the x-velocity and pressure with the standard reconstruction method (SRM). With the SRM, the
velocity field in the solid region is set to zero at every time step. In Fig. 9(a) and (b), the SRM produces a distorted flow field
with the parabolic inflow/outflow B.C. The velocity is smeared across the two channels, especially near x=d ¼ �10 and 10.
The wall-normal velocity at the thin wall is set to zero at every time step. However, the divergence of the velocity at the thin
wall is computed using the velocity fields in both channels, which results in the coupling. In Fig. 9(c) and (d), however, the
SRM produces no distortion of the velocity field. Since there is no pressure gradient, the IB treatment for the velocity is suf-
ficient to obtain the correct solution. This issue exists also for IB methods based on a discretization.

Fig. 10 shows contours of the x-velocity and pressure with the IB-ADM and the parabolic inflow/outflow B.C. in the x-
direction. It is shown that the IB-ADM maintains a parabolic x-velocity profile and a discontinuous pressure profile across
the thin wall. This is confirmed in Fig. 11 showing the velocity profiles at x = 0 with the IB-ADM and SRM with the parabolic
inflow/outflow B.C. Notably, the distorted profile does not improve significantly when the number of mesh points is doubled
in both directions.

In summary, satisfying the pressure decoupling constraint is important to numerically decouple domains that are
physically unrelated, and this condition is most effective in handling a thin solid object.
Fig. 9. Contours of the x-velocity and pressure with the standard reconstruction method. Bold lines denote boundaries of the channels.



Fig. 10. Contours of the x-velocity and pressure with the IB-ADM. Bold lines denote boundaries of the channels.
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4.3. Laminar flow around a circular cylinder

A laminar flow around a circular cylinder was used to verify the wall-pressure predicted with the IB-ADM. The Reynolds
number based on the diameter of the cylinder ðdÞ and the freestream velocity ðU1Þ is 160. The overall flow conditions are the
same as those of Park et al. [40] which used a body-fitted finite difference method for the simulations.

In this section, a locally refined mesh (shown in Fig. 12) is used. The number of mesh points around the circular cylinder is
approximately 128. The flow field is averaged in time using about 9000 samples with CFL = 1.6 and about 18,000 samples
with CFL = 0.4.

We compared the IB-ADM with the standard reconstruction method, which is the combination of the linear interpolation
method and standard mass conservation. With the latter, the velocity field inside the cylinder is artificially set to zero at
Fig. 12. Locally refined mesh for a laminar flow around a circular cylinder.
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every time step. Otherwise, the flow field becomes unphysical, as noted in [26], because of coupling of the pressure fields
across the IB and the velocity error from the projection step.

Fig. 13(a) shows the time-averaged pressure coefficients near the stagnation point with the two methods. It is shown that
wiggles in the wall pressure with the standard reconstruction method are reduced with the IB-ADM. Interestingly, with the
standard reconstruction method, the size of wiggles increases as the time step Dt decreases. This is due to the decoupling
between local velocity and pressure fields, which results from the fact that the linear interpolation method for the velocity
has no contribution from the local pressure gradient [26]. This problem is not observed with the IB-ADM. Except for the wig-
gles, overall agreement with the previous study is found to be good, as shown in Fig. 13(b).

5. Validation studies

5.1. DNS of a turbulent channel flow at Res ¼ 180

An objective of this study is to assess that the IB method correctly predicts the wall pressure fluctuations in a turbulent
flow because of the interest in computing flow-generated noise. In this section, results from a DNS study of a turbulent chan-
nel flow at Res=180 are presented. In order to validate the IB method, several statistical quantities including the mean veloc-
ity, RMS velocity, pressure spectra, and pressure space–time correlation are compared with previous DNS results. Kim et al.
[30] and Moser et al. [39] reported various statistics, including the velocity and pressure spectra in space. Also, Choi and
Moin [5] reported the power spectrum and space–time correlation of the wall pressure.
Fig. 14. Locally refined meshes for a turbulent channel flow.
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The domain size in the streamwise ðxÞ, wall-normal ðyÞ, and spanwise ðzÞ direction is ðLx; Ly; LzÞ ¼ ð4pd;2d;4pd=3Þ, respec-
tively, with d being the channel half-width. Fig. 14 shows two meshes used in the present study. The first mesh is a body-
fitted mesh with local mesh refinement. The IB reconstruction is not required with this mesh as the boundaries are perfectly
aligned. The second mesh is generated by inclining the first mesh by 4.8 degrees in the counter-clockwise direction. The
mesh is then mirrored across the centerline of the channel to achieve symmetry. This results in stair-step boundaries at
the top and bottom of the domain where the IB method is applied. This case is referred to hereafter as the inclined case.
For both meshes, the grid spacing in the wall unit is ðDxþ;Dyþ;DzþÞ ¼ ð8:9;0:7;5:8Þ at the wall and
ðDxþ;Dyþ;DzþÞ ¼ ð17:8;2:8;5:8Þ at the channel centerline, respectively. These meshes are slightly under-resolved for DNS
with a low-order numerical scheme. The total number of mesh points is approximately 4.4 million.

The flow conditions are the same as in [30,5]. In order to obtain the wall-pressure data for computing the power spectra
and space–time correlation, the same time step Dt and sampling rate as [5] were used. The statistical sample was obtained
by averaging in the streamwise and spanwise directions, as well as in time.

Fig. 15 shows the mean streamwise velocity profile from the present study. The agreement with the previous DNS result
is satisfactory. The difference between the body-fitted and inclined cases is shown to be minor. Fig. 16 shows profiles of the
RMS streamwise and wall-normal velocity. Again, agreement with the previous DNS is good. The RMS profiles of the wall-
normal velocity exhibit a kink at the locations of grid transitions due to localized discretization errors.

Previous studies also reported the ratio of the RMS wall pressure ðprmsÞ and wall shear stress ðswÞ. The result from the
present study is shown in Table 1; agreement with the previous DNS results is acceptable. When the previous IB method
(SRM) was used with the inclined mesh, it produced about 3.3% larger error (relative to [39]) than the IB-ADM.

Fig. 17 shows the wall-pressure power spectra / as a function of the discrete frequency xt compared with the result of
[5]. The overall agreement is good; however, there are discrepancies in both the low- and high-frequency regions. The dis-
crepancy in the high-frequency region is due to the difference in the numerical schemes: the present calculations are only
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Fig. 15. Mean streamwise velocity profiles in wall units: �, Kim et al. [30]; 3, inclined (IB) case; - - - -, body-fitted case.
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Table 1
RMS wall pressure scaled by the wall shear stress.

Kim et al. [30] Moser et al. [39] Inclined (IB) Body-fitted Inclined (SRM)

prms=sw 1.5 1.533 1.556 1.552 1.607

1e-006

1e-005
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Fig. 17. Wall-pressure power spectra /ðxtÞ : �, Choi and Moin [5]; 3, inclined (IB) case; - - - -, body-fitted case; � � ��, Cartesian collocated 10 M mesh.
second-order accurate whereas Choi and Moin [5] used a spectral spatial discretization. The difference in the low-frequency
region is unexpected. In order to minimize grid dependency of our solution, a simulation with a Cartesian orthogonal mesh
of 10 million mesh points ð256� 192� 192Þ was also carried out using the present numerical scheme. The discrepancy was
not reduced. In an effort to examine the effects from other computational conditions, several additional simulations were
carried out. We investigated the effect of constant mass flux vs. pressure gradient to drive the flow, the sensitivity to the size
of the temporal window used for computing the power spectra, and the impact of the discretization of the convective term.
None of these led to a reduction of the discrepancy in the low frequency region. A different conclusion was reached by inte-
grating for much longer times and computing the power spectra over the same time interval, but from different samples.
Fig. 18 shows the power spectra for the cases with the same number of samples in time ðN ’ 20; 000Þ, but with different
start times. Changes are observed only in the low-frequency region, and some of the cases show a similar profile to [5]. From
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these observations, we can conclude that the number of samples used in [5] and in the present study might not have been
sufficient to achieve fully-converged statistics in the low-frequency region.

Another quantity of interest for the study of turbulence transport is the convection velocity, Uc , which can be interpreted
as the translation speed of the Galilean frame in which the integral time scale is maximized [55]. The space–time correlation
of the wall pressure Rðrx; rtÞ is a function of the streamwise spatial separation ðrxÞ and temporal separation ðrtÞ. According to
Choi and Moin [5], a common definition of Uc is the ratio of rx and rt that maximizes Rðrx; rtÞ:
Fig. 19
collocat
UcðrxÞ ¼ rx=rtc;
where rtc is defined as:
@Rðrx; rtÞ
@rt

� �
rt¼rtc

¼ 0:
In order to find rtc, we can select a discrete rt value that results in the maximum Rðrx; rtÞ for a given rx. Alternatively, a qua-
dratic polynomial can be used to find rtc for a given rx. These two approaches are referred to as linear and quadratic poly-
nomial searches, respectively. Fig. 19 shows the convection velocity of the wall pressure computed with these two search
methods. The convection velocity based on the quadratic polynomial search produces a smooth function of rx, while the con-
vection velocity based on the linear search shows closer agreement with the result of [5].

In summary, the statistical data of the present study show a good agreement with results from the previous DNS studies;
this indicates that the proposed IB method can correctly predict the wall pressure dynamics associated with the turbulent
channel flow.

The present DNS study produces promising results, but raises questions about how effective the IB method is in the pres-
ence of a very fine mesh near the wall as compared to a simpler wall treatment, such as the stair-step approximation. In a LES
or DNS, the grid spacing in the wall-normal direction is typically less than one in wall units. In case of the no-slip condition,
the stair-step approximation has first order accuracy in space. A test was performed for the channel flow with the inclined
mesh in Fig. 14(b). The grid spacing in the wall-normal direction is 0.7 at the wall. With the stair-step approximation, the
face boundary can be regarded as a rough wall with the roughness height kþ less than 1. According to Jimenez [25], the effect
of this small roughness on the logarithmic layer is negligible. And the effect on turbulent fluctuations is not documented in
literature for such small roughness. On the other hand, the similarities between the stair-step approximation and a rough
wall are only partially justified, as in the present grid only 1–2 meshes are used to resolve the surface roughness.

Notable differences between the cases with the IB method and stair-step approximation were observed in the mean
streamwise velocity drawn in log scale and the RMS wall pressure. Fig. 20 shows the mean streamwise velocity profiles.
Compared to the IB method, the viscous sub-layer with the stair-step approximation is shifted up by the roughness height,
k. When the coordinate is shifted down by the roughness height, both methods show almost identical results. The same trend
is observed in the RMS velocity. The ratio of the RMS wall pressure and wall shear stress is 1.556 with the IB method, while
the stair-step approximation results in 1.635 – about 5% increase. In summary, the effect of the stair-step approximation in
DNS is appreciable exclusively in the viscous sub-layer.

5.2. LES of the turbulent flow around an airfoil

In this section, results from LES of turbulent flow around a thin airfoil are presented. The airfoil is a cross-section of a
commercial low-speed fan blade (its shape was provided by VALEO Inc.). The objective of this test is to validate the IB
. Convection velocity UcðrxÞ scaled by the centerline velocity U0 : �, Choi and Moin [5]; +, inclined (IB) case; �, body-fitted case; M, Cartesian
ed 10M mesh; O, Cartesian staggered 10M mesh.
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method by comparing turbulent statistics with previous studies. The Reynolds number based on the chord length ðcÞ and the
freestream velocity ðU1Þ is 150,000. The angle of attack is 8 degrees.

Fig. 21 shows the computational domain. In order to make the simulation comparable to a reference experiment with a
reasonable computational cost, a RANS simulation was performed for the full geometry (Fig. 21, left). The RANS solution was
used as the far-field boundary condition for a sub-domain where more accurate simulations using LES are carried out. The
computational domain in x and y directions is �1:9 < x=c < 2:4;�1:2 < y=c < 1:3, respectively. The trailing edge of the airfoil
is located at ðx=c; y=cÞ ¼ ð0;0Þ. The domain size in the spanwise direction is 0:1c, with periodic boundary conditions enforced.
Wang et al. [54] mentioned that the improvement is marginal when the spanwise domain size is doubled. The spanwise do-
main size in wall unit ranges from 1150 to 700 for �0:8 < x=c < 0:2.

Local mesh refinement is used to cluster mesh points efficiently near the airfoil surface and in the downstream region
where the shear layer develops. Fig. 22 shows the mesh used in the present study. The grid spacing in the wall-normal
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Fig. 24. Averaged and RMS x-velocity profiles at several x-locations: �, Wang et al. [54]; 3, IB method; - - - -, body-fitted.

Fig. 23. Contours of the instantaneous x-velocity.
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Fig. 26 shows the pressure power spectrum at the trailing edge. Compared to the experiment, the result with the IB meth-
od shows a better agreement than the body-fitted simulation at frequencies less than 400 Hz but a worse agreement at fre-
quencies at 400–1500 Hz. The agreement is similar between two cases at frequencies higher than 1500 Hz. Overall
agreement is found to be acceptable.
6. Conclusions

IB methods have been developed as an alternative to conventional body-fitted approaches to reduce the difficulties of
mesh generation. The objective of the present study was to assess the predictive capabilities of IB method for the near-wall
flow dynamics in turbulent flows.

Existing formulations of the IB method were analyzed in order to develop an accurate approach for turbulent flows. First,
a pressure decoupling constraint was derived to guarantee the accuracy of the IB formulation by decoupling the flow domain
from other physically unrelated domains. In addition, the incompatibility between the interpolated velocity boundary con-
dition and mass conservation was investigated. These lead to the introduction of the immersed boundary-approximated do-
main method (IB-ADM). The discretized momentum equation and continuity equation are satisfied inside an approximated
domain where the reconstructed velocity is used as the boundary condition. In numerical tests, presented IB-ADM shows
second-order accuracy and correctly predicts the near-wall velocity, pressure and scalar fields. By satisfying the pressure
decoupling constraint, the IB-ADM is shown to successfully handle very thin solid objects.

DNS of a turbulent channel flow at Res ¼ 180 has been performed, and the statistical data, such as the mean & RMS veloc-
ity, pressure spectra, and pressure space–time correlation, show good agreement with previous studies. When applied to the
turbulent flow around an airfoil, the predicted flow statistics, including the power spectra of the wall pressure, are again in
good agreement with a previous body-fitted LES simulation and experiments. These results indicate that the proposed IB
method can correctly predict the dynamics of wall-bounded turbulent flows. Compared to the purely Cartesian mesh retain-
ing similar resolution near the wall, locally refined meshes employed herein are found to reduce the number of grid points
significantly, thus making the IB method practical for turbulent flows with complex geometries.
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